New Trends: Time in Range and the Use of Continuous Glucose Monitoring Devices on Glycemic Control


  •   Karyna Lucena Valença de Souza

  •   Marcela Mascarenhas Braga Rassi

  •   Diana Aristótelis Rocha de Sá

  •   Renata Maksoud Bussuan

  •   Luciana Correa de Souza Rodrigues

  •   Alberto K. Arbex


Time in Range is a new concept in Diabetology, defining the percentage of the length of time in which the patient stays within a predetermined range of blood glucose. Electronic devices, from which the concept of Time in Range derived, help promote a better comprehension of these procedures, and may lead to a decrease in glycemic variability and to a lower risk of complications. It may also ease the control and adjustments in the treatment of diabetes. Therefore, the application of the Time in Range concept could generate a better diabetes control.

Diabetes Mellitus is a chronic metabolic disease caused by hyperglycemia due to changes related to insulin production and action. It has high morbidity and mortality and high prevalence and may affect several age groups. Currently, its classification is based on its etiology, with the most common diagnoses being pre-diabetes, type 1, type 2 and gestational diabetes. It should be investigated early in patients who have risk factors such as obesity and physical inactivity. It is diagnosed by alterations in fasting or random glucose measurement, oral glucose tolerance test and glycated hemoglobin. Its control and monitoring should be based on glycemic stability. Even more mechanisms are being developed to help the patient in the control of blood glucose, avoiding risks of acute and chronic complications, which can be severe and limiting.

Keywords: Diabetes Mellitus, Time in Range, vascular complications, glycemic variability, glycemic self-monitoring


Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations from the International Consensus on Time in Range. Disponível em: Acesso em Julho de 2019.

American Diabetes Association. Standards of medical care in diabetes: 2012. Diabetes Care. 2012;35(Suppl 1):S11-63.

Insulina Technosfere: Inhaled insulin for post prandial glucose control | Freddy Eliaschvitz. Disponível em: Acesso em julho de 2019.

Introduction: Standards of Medical Care in Diabetes—2020. Diabetes Care 2020 Jan; 43(Supplement 1): S1-S2.

Salles, P.; Halpern, A; Cercato, C. O Essencial em Endocrinologia 1a ed. 2016.

Vilar, Lúcio. Endocrinologia Clínica - 6ª edição, 2016.

Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes—2020 American Diabetes Association Diabetes Care 2020 Jan; 43(Supplement 1): S32-S36.

Yeh HC, Duncan BB, Schmidt MI, Wang NY, Brancati FL. Smoking, smoking cessation,and risk for type 2 diabetes mellitus: a cohort study. Ann Intern Med 2010;152:10–17.

Oba S, Noda M, Waki K, et al.; Japan Public Health Center-based Prospective Study Group. Smoking cessation increases short-term risk of type 2 diabetes irrespective of weight gain: the Japan Public Health Center-based Prospective Study [published correction appears in PLoS One 2013;8:10.1371/annotation/23aa7c42-9a4d-42a7-8f50-9d0ac4b85396]. PLoS One 2012;7:e17061.

Hu Y, Zong G, Liu G, et al. Smoking cessation, weight change, type 2 diabetes, and mortality. N Engl J Med 2018;379:623–632.

Grock S, Ku J-H, Kim J, Moin T. A review of technology-assisted interventions for diabetes prevention. Curr Diab Rep 2017;17:107.

Reaney M, Elash CA, Litcher-Kelly L. Patient reported outcomes (PROs) used in recent phase 3 trials for type 2 diabetes: a review of concepts assessed by these PROs and factors to consider when choosing a PRO for future trials. Diabetes Res Clin Pract 2016;116:54–67Google Scholar.

Vieta A, Badia X, Sacristán JA. A systematic review of patient-reported and economic outcomes: value to stakeholders in the decision-making process in patients with type 2 diabetes mellitus. Clin Ther 2011;33:1225–1245PubMedGoogle Scholar.

Engström MS, Leksell J, Johansson U-B, Gudbjörnsdottir S. What is important for you? A qualitative interview study of living with diabetes and experiences of diabetes care to establish a basis for a tailored patient-reported outcome measure for the Swedish National Diabetes Register. BMJ Open 2016;6:e010249Abstract/FREE Full TextGoogle Scholar.

Vanstone M, Rewegan A, Brundisini F, Dejean D, Giacomini M. Patient perspectives on quality of life with uncontrolled type 1 diabetes mellitus: a systematic review and qualitative meta-synthesis. Ont Health Technol Assess Ser 2015;15:1–29PubMedGoogle ScholarP. Reed Larsen & Henry M. Kronenberg & Shlomo Melmed & Kenneth S. Polonsky Williams - Tratado de Endocrinologia Clínica - 11ª edição.

Keely E, Traczyk L, Liddy C. Patients’ perspectives on wait times and the referral-consultation process while attending a tertiary diabetes and endocrinology centre: is econsultation an acceptable option? Can J Diabetes 2015;39:325–329Google Scholar.

Joensen LE, Filges T, Willaing I. Patient perspectives on peer support for adults with type 1 diabetes: a need for diabetes-specific social capital. Patient Prefer Adherence 2016;10:1443–1451Google Scholar.

Polonsky WH, Fisher L, Hessler D, Bruhn D, Best JH. Patient perspectives on once-weekly medications for diabetes. Diabetes Obes Metab 2011;13:144–149CrossRefPubMedGoogle Scholar.

Sullivan-Bolyai S, Bova C, Johnson K, et al. Engaging teens and parents in collaborative practice. Diabetes Educ 2014;40:178–190CrossRefPubMedGoogle Scholar.

Nadal JF, Barba EL, Garcia CG, Buil-Cosiales P, Millaruelo JM, Peña MLO. Patient-reported outcomes in type 2 diabetes mellitus: patients’ and primary care physicians’ perspectives in the Spanish health care system. Patient Prefer Adherence 2015;8:1413–1422.

Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira de Diabetes 2017-2018. São Paulo: AC Farmacêutica; 2019. Disponível em: Acesso em 20 de agosto de 2019.

American Diabetes Association. 2. Classification and Diagnosis of Diabetes. Diabetes Care. 2018;41(Suppl 1):S13-S27.

Posicionamento Oficial SBD, SBPC-ML, SBEM e FENAD 2017/2018. Atualização Sobre Hemoglobina Glicada (A1c) Para Avaliação Do Controle Glicêmico E Para O Diagnóstico Do Diabetes: Aspectos Clínicos E Laboratoriais Disponível em: Acesso em agosto de 2019.

Guo XH (2016): The value of short- and long-acting glucagon-like peptide-1 agonists in the management of type 2 diabetes mellitus: experience with exenatide. Curr Med Res Opin. 32(1):61-76. doi: 10.1185/03007995.2015.1103214.

Dungan K (2019): Amylin analogs for the treatment of diabetes mellitus. In: UpToDate, Basow, DS (Ed), Waltham, MA. Cited 11/12/19.

The ACCORD Study Group. Nine-year effects of 3.7 years of intensive glycemic control on cardiovascular outcomes. Diabetes Care 2016;39:701-8.

Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial Re- search Group. Ophthalmology. 1995;102(4):647-61.

The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the Diabetes Control and Complications Trial. Diabetes. 1995;44(8):968-83.

Rosenberg JB, Tsui I. Screening for diabetic retinopathy. N Engl J Med. 2017;376(16):1587-8.

ADA (2017): American Diabetes Association Standards of Medical Care in Diabetes – 2017. Diabetes Care. 40 (Suppl 1): S1-138.

Li R, Zhang P, Barker LE, Chowdhury FM, Zhang X. Cost-effectiveness of interventions to prevent and control diabetes mellitus: a systematic review. Diabetes Care 2010;33:1872–1894.

Cox DJ, Gonder,Frederick L, Polonsky W, Schlundt D, Kovatchev B, Clarke W. Blood glucose awareness training (BGAT-2): long-term benefits. Diabetes Care 2001;24:637–642.

Riddlesworth TD, Beck RW, Gal RL, et al. Optimal sampling duration for continuous glucose monitoring to determine long-term glycemic control. Diabetes Technol Ther2018;20:314–316pmid:29565197.

Vincent AM, Russell JW, Low P, et al. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev2004;25:612–28.doi:10.1210/er.2003-0019.

Pop-Busui R, Sima A, Stevens M. Diabetic neuropathy and oxidative stress. Diabetes Metab Res Rev2006;22:257–73.doi:10.1002/dmrr.625.

de Boer IH, Group DER, DCCT/EDIC Research Group. Kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care2014;37:24–30.doi:10.2337/dc13-2113.

Nathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med1993;329:977–86.doi:10.1056/NEJM199309303291401.

The effect of intensive diabetes therapy on the development and progression of neuropathy. The diabetes control and complications trial Research Group. Ann Intern Med1995;122:561–8.doi:10.7326/0003-4819-122-8-199504150-00001.

Pop-Busui R, Lu J, Lopes N, et al. Prevalence of diabetic peripheral neuropathy and relation to glycemic control therapies at baseline in the Bari 2D cohort. J Peripher Nerv Syst2009;14:1–13.

Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet2010;376:419–30.doi:10.1016/S0140-6736(10)60576-4.

McCulloch DK (2016): General principles of insulin therapy in diabetes mellitus. In: UpToDate, Basow, DS (Ed), Waltham, MA. Cited 2/7/17. - Acesso em 20 de Agosto de 2019.

Hanas R, de Beaufort C, Hoey H, Anderson B. Insulin delivery by injection in children and adolescents with diabetes. Pediatric Diabetes. 2011;12(5):518-26.

Medtronic. i-Port AdvanceTM injection port. [Internet]. [acesso em fevereiro de 2020]. Disponível em:

Diretrizes da Sociedade Brasileira de Diabetes 2019-2020 Acessado em fevereiro de 2020, disponível em:

Riley D, Raup GH. Impact of a subcutaneous injection device on improving patient care. Nurs Manage. 2010;41(6):49-50.

Khan AM, Alswat KA. Benefits of Using the i-Port System on Insulin-Treated Patients. Diabetes Spectr. 2019;32(1):30-35.

Goldberg T, Wong E. Afrezza (Insulin Human) Inhalation Powder: A New Inhaled Insulin for the Management of Type-1 or Type-2 Diabetes Mellitus. P T. 2015;40(11):735-41.

Mohanty RR, Das S. Inhaled Insulin - Current Direction of In- sulin Research. J Clin Diagn Res. 2017;11(4):OE01-OE02.

Danne T, Nimri R, Battelino T, Bergenstal RM, Close KL, De-Vries JH, et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care. 2017;40(12):1631-40.

Novas Abordagens Intensivas Para O Controle Do Diabetes Tipo 2. Disponível em: Acessado em 01 de agosto de 2019.

Posicionamento Oficial SBD no 01/2019 Conduta Terapêutica No Diabetes Tipo 2: Algoritmo SBD 2019. Disponível em: Acesso em Agosto de 2019.

Controvérsia E Avanços Tecnológicos Sobre Hemoglobina Glicada (A1C). Disponível em: Acesso em 23 de agosto de 2019.

ASSOCIAÇÃO Brasileira para o Estudo da Obesidade e da Síndrome Metabólica. Diretrizes brasileiras de obesidade 2016 / ABESO - Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica. 4. ed. São Paulo, SP.

FALUDI, A. A. et al. Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose. PubMed. 2017.

Intensive Glucose Control in Patients with Type 2 Diabetes - 15-Year Follow-up Disponível em: Acesso em julho de 2019.

Buse JB et al (2019): 2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care.

P. Reed Larsen & Henry M. Kronenberg & Shlomo Melmed & Kenneth S. Polonsky Williams - Tratado de Endocrinologia Clínica - 11ª edição.

Haak T, Hanaire H, Ajjan R, Hermanns N, Riveline JP, Rayman G. Flash glucose-sensing technology as a replacement for blood glucose monitoring for the management of insulin-treated type 2 diabetes: a multicenter, open-label ran- domized controlled trial. Diabetes Ther 2017;8: 55-73.

Burant CF, Young LA American Diabetes Association. Medical Management of Type 2 Diabetes. 7th ed. Burant CF, Young LA, Eds. Alexandria, VA, American Diabetes Association, 2012.

Grant RW, Kirkman MS. Trends in the evidence level for the American Diabetes Association's "Standards of Medical Care in Diabetes" from 2005 to 2014. Diabetes Care 2015;38:6-8.

Mazze RS, Lucido D, Langer O, Hartmann K, Rodbard D. Ambulatory glucose profile: representation of verified self-monitored blood glucose data. Diabetes Care 1987;10:111-117pmid:3552508.

Fonseca V, Grunberger G. Letter to the editor: standard glucose reporting: follow-up to the February 2016 AACE CGM Consensus Conference. Endocr Pract 2017;23:629-632pmid:28467179.

Self-monitoring of blood glucose in non-insulin treated type 2 diabetes - Innternacional Diabetes Federation - Disponível em: Acesso em 13 de agosto de 2019.

Pickup JC, Freeman SC, Sutton AJ. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ 2011; 343:d3805.

Time in Range: the new metric for Diabetes | Robert Vigerski Disponível em: Acesso em julho de 2019.

Wang CC, Shah AC. American Diabetes Association. Medical Management of Type 1 Diabetes. 7th ed. Wang CC, Shah AC, Eds. Alexandria, VA, American Diabetes Association, 2017.

Gonder-Frederick LA, Schmidt KM, Vajda KA, et al Psychometric properties of the Hypoglycemia Fear Survey-II for adults with type 1 diabetes. Diabetes Care 2011;34:801-806.

Cox DJ, Kovatchev B, Koev D, et al. Hypoglycemia anticipation, awareness and treatment training (HAATT) reduces occurrence of severe hypoglycemia among adults with type 1 diabetes mellitus. Int J Behav Med 2004.

Kilpatrick ES, Rigby AS, Goode K, Atkin SL. Relating mean blood glucose and glucose variability to the risk of multiple episodes of hypoglycaemia in type 1 diabetes. Diabetologia2007;50:2553-2561pmid:17882397.

Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2020 American Diabetes Association. Diabetes Care 2020 Jan; 43(Supplement 1): S48-S65.

Norris SL, Lau J, Smith SJ, Schmid CH, Engelgau MM. Self-management education for adults with type 2 diabetes: a meta-analysis of the effect on glycemic control. Diabetes Care 2002;25:1159-1171.

Haas L, Maryniuk M, Beck J, et al.; 2012 Standards Revision Task Force. National Standards for Diabetes Self-Management Education and Support. Diabetes Care 2013;37(Suppl. 1):S144-S153.

Frosch DL, Uy V, Ochoa S, Mangione CM. Evaluation of a behavior support intervention for patients with poorly controlled diabetes. Arch Intern Med 2011;171:2011-2017.

Cooke D, Bond R, Lawton J, et al.; U.K. NIHR DAFNE Study Group. Structured type 1 diabetes education delivered within routine care: impact on glycemic control and diabetes-specific quality of life. Diabetes Care 2013;36:270-272.

Chrvala CA, Sherr D, Lipman RD. Diabetes self-management education for adults with type 2 diabetes mellitus: a systematic review of the effect on glycemic control. Patient Educ Couns2016;99:926-943.

Steinsbekk A, Rygg LØ, Lisulo M, Rise MB, Fretheim A. Group based diabetes self-management education compared to routine treatment for people with type 2 diabetes mellitus. A systematic review with meta-analysis. BMC Health Serv Res 2012;12:213.

Deakin T, McShane CE, Cade JE, Williams RDRR. Group based training for self-management strategies in people with type 2 diabetes mellitus. Cochrane Database Syst Rev 2005;2:CD003417.

Cochran J, Conn VS. Meta-analysis of quality of life outcomes following diabetes self-management training. Diabetes Educ 2008;34:815-823.

He X, Li J, Wang B, et al. Diabetes self-management education reduces risk of all-cause mortality in type 2 diabetes patients: a systematic review and meta-analysis. Endocrine 2017;55:712-731.

Thorpe CT, Fahey LE, Johnson H, Deshpande M, Thorpe JM, Fisher EB. Facilitating healthy coping in patients with diabetes: a systematic review. Diabetes Educ 2013;39:33-52.

Fisher L, Hessler D, Glasgow RE, et al. REDEEM: a pragmatic trial to reduce diabetes distress. Diabetes Care 2013;36:2551-2558.

Robbins JM, Thatcher GE, Webb DA, Valdmanis VG. Nutritionist visits, diabetes classes, and hospitalization rates and charges: the Urban Diabetes Study. Diabetes Care 2008;31:655-660.

Duncan I, Ahmed T, Li QE, et al. Assessing the value of the diabetes educator. Diabetes Educ2011;37:638-657.

Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group. Intensive diabetic treatment and cardiovascular outcomes in type 1 diabetes: The DCCT/EDIC study 30-year follow-up. Diabetes Care2016;39:686-693pmid:26861924.

The DCCT Research Group. Reliability and validity of a diabetes quality-of-life measure for the Diabetes Control and Complications Trial (DCCT). Diabetes Care 1988;11:725-32.

The Diabetes Control and Complications Trial/Epidemiology of Diabetes Inter- ventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005;353:2643-53.

Strawbridge LM, Lloyd JT, Meadow A, Riley GF, Howell BL. One-year outcomes of diabetes self-management training among Medicare beneficiaries newly diagnosed with diabetes. Med Care2017;55:391-397.

Bergenstal RM, Gal RL, Connor CG, et al. Racial differences in the relationship of glucose concentrations and hemoglobin A1c levels. Ann Intern Med 2017;167:95-102.

Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ. Translating the A1C assay into estimated average glucose values. Diabetes Care 2008;31:1473-1478.

Beck RW, Connor CG, Mullen DM, Wesley DM, Bergenstal RM. The fallacy of average: how using HbA1c alone to assess glycemic control can be misleading. Diabetes Care 2017;40:994-999.

DeWalt DA, Davis TC, Wallace AS, et al. Goal setting in diabetes self-management: taking the baby steps to success. Patient Educ Couns 2009; 77: 218-223pmid:19359123.

Atualização sobre hemoglobina glicada (HbA1) para avaliação do controle glicêmico e para o diagnostico do diabetes: aspectos clínicos e laboratoriais Disponível em: Acesso em julho de 2019.

Knowler WC, Barrett-Connor E, Fowler SE, et al.; Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med2002;346:393-403.

Wing RR, Edelstein SL, et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care 2006;29:2102-2107 ?

Ley SH, Hamdy O, Mohan V, Hu FB. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 2014;383:1999-2007.

Jacobs S, Harmon BE, Boushey CJ, et al. A priori-defined diet quality indexes and risk of type 2 diabetes: the Multiethnic Cohort. Diabetologia 2015;58:98-112.

Chiuve SE, Fung TT, Rimm EB, et al. Alternative dietary indices both strongly predict risk of chronic disease. J Nutr 2012;142:1009-1018.

Schwingshackl L, Bogensberger B, Hoffmann G. Diet quality as assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension score, and health outcomes: an updated systematic review and meta-analysis of cohort studies. J Acad Nutr Diet2018;118:74-100.e11.

Management of Postmeal Glucose - Innternacional Diabetes Federation - Disponível em: Acesso em 15 de agosto de 2019.

Posicionamento Oficial SBD n0 04/2019: O papel do sistema de infusa?o conti?nua de insulina, bomba de insulina, no tratamento do diabetes. Disponível em: Acesso em outubro 2019.

Protocolo Clínico E Diretrizes Terapêuticas Para A Dispensação De Sensor De Glicose. Secretaria de saúde Governo do Estado do Espírito Santo. - Disponível em:ública/Protocolo%20Sensores%20de%20Glicose.pdf Acesso em:16 de Agosto de 2019.

Diabetes: pesquisa avalia os fatores associados à qualidade de vida. Disponível em: Acesso em agosto de 2019.

Diabetes Trials Unit - Acesso em 13 de Agosto de 2019.

Monnier L, Colette C, Wojtusciszyn A, et al. Toward defining the threshold between low and high glucose variability in diabetes. Diabetes Care 2017;40:832-838pmid:28039172.

Monnier L, Colette C, Dejager S, Owens DR. Near normal HbA1c with stable glucose homeostasis: the ultimate target/aim of diabetes therapy. Rev Endocr Metab Disord2016;17:91-101pmid:26803295.

Abbott. Freestyle Libre User Manual. 2016.

Uso da tecnologia e das novas terapias para tomada de decisões terapêuticas no DM. - Acesso em 13 de Agosto de 2019.

Revista Portuguesa de Diabetes. 2018; 13 (4): 143-153 NATIONAL CONSENSUS - Consenso Nacional para a Utilizac?a?o do Sistema de Monitorizac?a?o Flash da Glicose National Consensus on the Use of the Glucose Flash Monitoring System disponível em :ágs-143-153.pdf Acesso em 22 de agosto de 2019.

Six-Month Randomized, Multicenter Trial of Closed-Loop Control in Type 1 Diabetes. N Engl J Med. 2019 Oct 31;381(18):1707-1717. doi: 10.1056/NEJMoa1907863. Epub 2019 Oct 16.

Determinação Das Glicemias Capilar E Venosa Com Glicosímetro Versus Dosagem Laboratorial Da Glicose Plasmática - Jornal Brasileiro de Patologia e Medicina Laboratorial. Disponível em: Acesso em: 12 de agosto de 2019.

Brown SA, Kovatchev BP, Raghinaru D, et al. Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. N Engl J Med. 2019;381:1707-1717.

Protocolo Clínico e Diretrizes Terape?uticas Diabetes Mellitus Tipo 1 - Disponível em:

/Relatorio.PCDTDM2018.pdf Acesso em 08 de agosto de 2019.

American Diabetes Association. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018; 41:S55.

Harmonizing Hemoglobin A1C Testing. - Acesso em 14 de Agosto de 2019.

Hypo and Hyperglycemia in Relation to the Mean, Standard Deviation, Coefficient of Variation, and Nature of the Glucose Distribution Disponível em: Acesso em Agosto de 2019.

Chandalia, H.B. and Krishnaswamy, P.R. Glycated Hemoglobin u2013 Current Science. (83)12:1522-1532, 2002. Disponível em: Acesso em 23 de agosto de 2019.

Time in Range, as a Novel Metric of Glycemic Control, Is Reversely Associated with Presence of Diabetic Cardiovascular Autonomic Neuropathy Independent of HbA1c in Chinese Type 2 Diabetes. Volume 2020 |Article ID 5817074 | 11 pages |

T. Danne, R. Nimri, T. Battelino et al., "International consensus on use of continuous glucose monitoring," Diabetes Care, vol. 40, no. 12, pp. 1631-1640, 2017.

J. Fleischer, "Diabetic autonomic imbalance and glycemic variability," Journal of Diabetes Science and Technology, vol. 6, no. 5, pp. 1207-1215, 2012.

R. W. Beck, R. M. Bergenstal, T. D. Riddlesworth et al., "Validation of time in range as an outcome measure for diabetes clinical trials," Diabetes Care, vol. 42, no. 3, pp. 400-405, 2019.

V. Spallone, F. Bellavere, L. Scionti et al., "Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy," Nutrition, Metabolism, & Cardiovascular Diseases, vol. 21, no.1, pp. 69-78, 2011.

The DCCT Research Group, "The Diabetes Control and Complications Trial (DCCT). Design and methodologic considerations for the feasibility phase. The DCCT Research Group," Diabetes, vol. 35, no. 5, pp. 530-545, 1986.

UK Prospective Diabetes Study (UKPDS) Group, "Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)," The Lancet, vol. 352, no. 9131, pp. 837-853,1998.

UKPDS risk engine. Oxford, United Kingdom: Oxford Centre for Diabetes, En- docrinology and Metabolism, 2017 (https://

American Diabetes Association, "Standards of medicalcare in diabetes-2017: summary of revisions," Diabetes Care, vol. 39, Supplement 1,pp. S4-S5, 2017.

J. M. Lachin, S. Genuth, D. M. Nathan, B. Zinman, B. N. Rutledge, and DCCT/EDIC Research Group, "Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial--revisited," Diabetes, vol. 57, no. 4, pp. 995-1001, 2008.

S. T. Andersen, D. R. Witte, J. Fleischer et al., "Risk factors for the presence and progression of cardiovascular autonomic neuropathy in type 2 diabetes: ADDITION-Denmark," Diabetes Care, vol. 41, no. 12, pp. 2586-2594, 2018.

R. A. Vigersky and C. McMahon, "The relationship of hemoglobin A1C to time-in-range in patients with diabetes," Diabetes Technology & Therapeutics, vol. 21, no. 2, pp. 81-85, 2019.

L. A. Wright and I. B. Hirsch, "Metrics beyond hemoglobin A1C in diabetes management: time in range, hypoglycemia, and other parameters," Diabetes Technology & Therapeutics, vol. 19, no. S2, pp.S16-S26, 2017.

A.S. Omar, A. Salama, M. Allam et al., "Association of time in blood glucose range with outcomes following cardiac surgery," BMC Anesthesiology, vol. 15, article 14, 2015.

J. Lu, X. Ma, J. Zhou et al., "Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes," Diabetes Care, vol. 41, no. 11, pp. 2370-2376, 2018.

J. E. Jun, S. E. Lee, Y. B. Lee et al., "Continuous glucose monitoring defined glucose variability is associated with cardiovascular autonomic neuropathy in type 1 diabetes," Diabetes/Metabolism Research and Reviews, vol. 35, no. 2, article e3092, 2019.

D. Matsutani, M. Sakamoto, H. Iuchi et al., "Glycemic variability in continuous glucose monitoring is inversely associated with baroreflex sensitivity in type 2 diabetes: a preliminary report," Cardiovascular Diabetology, vol. 17, no. 1, p. 36, 2018.

Diabetes Technology: Review of the 2019 American Diabetes Association Standards of Medical Care in Diabetes.

Implantable Sensors. Disponível em: Acesso em julho de 2019.

Lind M, Polonsky W, Hirsch IB, et al. Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: the GOLD randomized clinical trial. JAMA. 2017;317:379-87. [PMID: 28118454] doi:10.1001/jama.2016.19976.

U.S. Food and Drug Administration. FDA news release: FDA expands indication for continuous glucose monitoring system, first to replace fingerstick testing for diabetes treatment decisions. Disponível em: Acesso em 14 Julho 2019.

Performance of the Freestyle® Libre flash glucose monitoring (flash GM) system in people with type 1 diabetes: a secondary outcome analysis of a randomised crossover trial.

Mullen DM, Bergenstal R, Criego A, Arnold KC, Goland R, Richter S. Time savings using a standardized glucose reporting system and ambulatory glucose profile. J Diabetes Sci Technol2018;12:614-621pmid:29169243.

Carlson AL, Mullen DM, Bergenstal RM. Clinical use of continuous glucose monitoring in adults with type 2 diabetes. Diabetes Technol Ther 2017;19(Suppl. 2):S4-S11pmid:28541137.

Lawlor KB, Hornyak MJ. SMART goals: how the application of SMART goals can contribute to achievement of student learning outcomes. Developments in Business Simulation and Experiential Learning: Proceedings of the Annual ABSEL Conference 2012;39:259-267.

DiMeglio LA, Acerini C, Codner E, et al. ISPAD Clinical Practice Consensus Guidelines 2018: glycemic control targets and glucose monitoring for children, adolescents, and young adults with diabetes. Pediatr Diabetes 2018;19:105-114.

W. Xu, Y. Zhu, X. Yang et al., "Glycemic variability is an important risk factor for cardiovascular autonomic neuropathy in newly diagnosed type 2 diabetic patients," International Journal of Cardiology, vol. 215, pp. 263-268, 2016.

Glycemic Targets: Standards of Medical Care in Diabetes-2020. American Diabetes Association Diabetes Care 2020 Jan; 43(Supplement 1): S66-S76.

Beck RW, Bergenstal RM, Cheng P, et al. The relationships between time in range, hyperglycemia metrics, and HbA1c. J Diabetes Sci Technol 2019;13:614-626.

Comparação Entre Determinaçõeses De Glicemia Capilar E Venosa Com Glicosímetros E Dosagem Laboratorial Da Glicose Plasmática Venosa - Revista Médica de Minas Gerais. Disponível em: Acesso em: 18 de agosto de 2019.

Beck, RW, et al. Diabetes Care 2019; 42:400-5.

Battelino T, Danne T, Bergenstal RM, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care2019;42:1593-1603.

SBD chancela o Consenso de Tempo no Alvo (Time in range, TIR) - Disponível em: Acesso em 20 de agosto de 2019.

Posicionamento Oficial SBD n0 03/2019: Utilização de setas de tendência para pacientes com diabetes mellitus em monitorização contínua de glicose. Disponível em: Acesso em outubro 2019.

Consenso Brasileiro de uso das setas de tendëncia | Melanie Rodacky Disponível em: Acesso em julho de 2019.

DeFronzo, Diabetes. 2009;58 773-795. access aug/2019.

Oficial SBD n0 03/2019.

ADA Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations from the International Consensus on Time in Range.


Download data is not yet available.


How to Cite
de Souza, K. L. V., Rassi, M. M. B., de Sá, D. A. R., Bussuan, R. M., Rodrigues, L. C. de S., & Arbex, A. K. (2021). New Trends: Time in Range and the Use of Continuous Glucose Monitoring Devices on Glycemic Control. European Journal of Medical and Health Sciences, 3(1), 47-59.