##plugins.themes.bootstrap3.article.main##

Cancer is the world's second leading cause of death in humans. Conventional anticancer therapies are often associated with lack of tumor specificity, failure to detect small metastases, increased resistance of tumors to anticancer drugs, and unintended adverse effects. Numerous alternative and better strategies in cancer treatment have been developed to overcome the negative effects of traditional cancer therapies. More than a century ago, William Coley, the father of cancer immounotherapy, laid the groundwork for bacterial anticancer therapy. Bacterial immunotherapy has been emerging as a potential anticancer therapy. Moreover, certain obligate and facultative anaerobic bacterial species are exploited as vectors for gene delivery to treat cancer. These genes encode for anticancer agents, cytokines, cytotoxic peptides, anti-angiogenic proteins, therapeutic molecules and prodrug-converting enzymes. Genetically engineered bacterial strains of Salmonella, Bifidobacterium, Clostridium and Listeria are widely used to deliver genes in anticancer therapy since they can selectively accumulate in solid tumors with a hypoxic/necrotic core in vivo, providing appealing delivery systems to target therapeutic agents and immunomodulatory molecules to the site of tumor. Certain genetically modified bacterial species such as Bifidobacterium longum and Bacillus licheniformis have been effectively used for the enzyme/prodrug therapy for cancer. Furthermore, certain anaerobic bacteria are emerging as potential tumor markers due to the increased mobility and the selectivity in germinating and multiplying in hypoxic/anoxic environments. Many of these novel developments have been studied extensively in different experimental models of cancer and certain clinical trials are ongoing for some treatment modalities. Although favourable results have shown so far, further studies and technological innovations are required to ensure the efficacy of bacterial anticancer therapy.

Downloads

Download data is not yet available.

References

  1. Cancer, World Health Organization. https://www.who.int/health-topics/cancer#tab=tab_1. (Accessed June 5, 2020).
     Google Scholar
  2. S. Patyar, R. Joshi, B. D. S. Prasad, A. Prakash, B. Medhi and B. K. Das. (March 2010). Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci. 17(1). pp. 21. Available: https://doi.org/10.1186/1423-0127-17-21.
    DOI  |   Google Scholar
  3. L. R. Weerakkody and C. Witharana. (October 2019). The role of bacterial toxins and spores in cancer therapy. Life Sci. 235:116839. Available: https://doi.org/10.1016/j.lfs.2019.116839.
    DOI  |   Google Scholar
  4. H. C. Nauts, “The beneficial effects of bacterial infections on host resistance to cancer. End results in 449 cases. A study and abstracts in the world medical literature (1775 – 1980) and personal communications”, in Monograph no.8, 22nd ed. Cancer Research Institute, 1980.
     Google Scholar
  5. W. B. Coley. (May 1893). The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. Am J Med Sci. 10. pp. 487-511. Available: https://doi:10.1001/jama.1893.02420490019007.
    DOI  |   Google Scholar
  6. M. A. Richardson, T. Ramirez, N. C. Russell and L. A. Moye. (May 1999). Coley toxins immunotherapy: A retrospective review. Altern Ther Health Med. 5(3). pp. 42-47. Available: PMID: 10234867.
     Google Scholar
  7. L. R. Zacharski and V. P. Sukhatme. (March 2005). Coley’s toxin revisited: Immunotherapy or plasminogen activator therapy of cancer? J Thromb Haemost. 3(3). pp. 424–427. Available: https://doi:10.1111/j.1538-7836.2005.01110.x.
    DOI  |   Google Scholar
  8. W. B. Coley. (August 1898). The treatment of inoperable sarcoma with the mixed toxins of erysipelas and bacillus prodigiosus: Immediate and final results in one hundred and forty cases. J Am Med Assoc. XXXI(9). pp. 456-465. Available: http:// doi:10.1001/jama.1898.92450090022001g.
    DOI  |   Google Scholar
  9. W. B. Coley. (May 1906). The treatment of inoperable sarcoma with the mixed toxins of Erysipelas and the Bacillus Prodigiosus. Lancet. 167(4316). pp. 1407–1408. Available: https://doi.org/10.1016/S0140-6736(00)68280-6.
    DOI  |   Google Scholar
  10. H.C. Nauts, W. E. Swift and B. L. Coley. (April 1946). The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., Reviewed in the light of modern research. Cancer Res. 6(4). pp. 205–216. Available: PMID: 21018724.
     Google Scholar
  11. R. A. Malmgren and C. C. Flanigan. (August 1955). Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer Res. 15(7). pp. 473–478. Available: PMID: 13240693.
     Google Scholar
  12. E. A. Carswell, L. J. Old, R. L. Kassel, S. Green, N. Fiore and B. Williamson. (September 1975). An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA. 72(9). pp. 3666–3670. Available: https://doi.org/10.1073/pnas.72.9.3666.
    DOI  |   Google Scholar
  13. J. A. Roth and R. J. Cristiano. (January 1997). Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst. 89(1). pp. 21-39. Available: https://doi.org/10.1093/jnci/89.1.21.
    DOI  |   Google Scholar
  14. T. Friedmann. (October 1992). A brief history of gene therapy. Nat Genet. 2(2). pp. 93–98. Available: https://doi.org/10.1038/ng1092-93.
    DOI  |   Google Scholar
  15. R. M. Ryan, J. Green and C. E. Lewis. (January 2006). Use of bacteria in anti-cancer therapies. Bioessays. 28(1). pp.84-94. Available: https://doi.org/10.1002/bies.20336.
    DOI  |   Google Scholar
  16. K. Yazawa, M. Fujimori, J. Amano, Y. Kano and S. Taniguchi. (February 2000). Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Ther. 7(2). pp. 269-274. Available: https://doi.org/10.1038/sj.cgt.7700122.
    DOI  |   Google Scholar
  17. X. Li, G. F. Fu, Y. R. Fan, W. H. Liu, X. J. Liu, J. J. Wang and G. X. Xu. (February 2003). Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: Selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther. 10(2). pp.105-111. Available: https://doi.org/10.1038/sj.cgt.7700530.
    DOI  |   Google Scholar
  18. J.R. Möse and G. Möse. (February 1964). Oncolysis by Clostridia. I. Activity of Clostridium butyricum (M-55) and other nonpathogenic Clostridia against the Ehrlich Carcinoma. Cancer Res. 24(2). pp. 212–216. Available: PMID: 14115686.
     Google Scholar
  19. S. Nuyts, L. Van Mellaert, S. Barbe, E. Lammertyn, J. Theys, W. Landuyt, et al.(October 2001). Insertion or deletion of the cheo box modifies radiation inducibility of Clostridium promoters. Appl Environ Microbiol. 67(10). pp. 4464–4470. Available: https://doi.org/10.1128/aem.67.10.4464-4470.2001.
    DOI  |   Google Scholar
  20. J. M. Pawelek, K. B. Low and D. Bermudes. (October 1997). Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57(20). pp. 4537-4544. Available: PMID: 9377566.
     Google Scholar
  21. J. Tjuvajev, R. Blasberg, X. Luo, L. M. Zheng, I. King and D. Bermudes. (July 2001). Salmonella-based tumor-targeted cancer therapy: Tumor amplified protein expression therapy (TAPETTM) for diagnostic imaging. J Control Release. 74(1-3). pp. 313-315. Available: https://doi.org/10.1016/s0168-3659(01)00340-6.
    DOI  |   Google Scholar
  22. N. S. Forbes. (November 2010). Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 10(11). pp. 785–794. Available: https://dx.doi.org/10.1038%2Fnrc2934.
    DOI  |   Google Scholar
  23. N. Mehta, J. G. Lyon, K. Patil, N. Mokarram, C. Kim and R. V. Bellamkonda. (December 2016). Bacterial carriers for glioblastoma therapy. Mol Ther Oncolytics.4. pp. 1-17. Available: https://doi.org/10.1016/j.omto.2016.12.003.
    DOI  |   Google Scholar
  24. B. T. Ning, B. Yu, S. Chan, J. L. Chan, J. D. Huang and G. C. Chan. (June 2017). Treatment of neuroblastoma with an engineered “Obligate” anaerobic Salmonella typhimurium strain YB1. J Cancer. 8(9). pp. 1609-1618. Available: https://doi.org/10.7150/jca.18776.
    DOI  |   Google Scholar
  25. C. Wei, A. Y. Xun, X. X. Wei, J. Yao, J. Y. Wang, R. Y. Shi, et al. Bifidobacteria expressing tumstatin protein for antitumor therapy in tumor-bearing mice. (June 2016). Technol Cancer Res Treat.15(3). pp. 498-508. Available: https://doi.org/10.1177/1533034615581977.
    DOI  |   Google Scholar
  26. S. Nuyts, L. Van Mellaert, J. Theys, W. Landuyt, E. Bosmans, J. Anné and P. Lambin. (August 2001). Radio-responsive recA promoter significantly increases TNFα production in recombinant clostridia after 2 Gy irradiation. Gene Ther. 8(15). pp. 1197-1201. Available: https://doi.org/10.1038/sj.gt.3301499.
    DOI  |   Google Scholar
  27. S. Nuyts, J. Theys, W. Landuyt, L. Van Mellaert, P. Lambin and J. Anné. (March-April 2001). Increasing specificity of anti-tumor therapy: Cytotoxic protein delivery by non-pathogenic clostridia under regulation of radio-induced promoters. Anticancer Res. 21(2A). pp. 857-861. Available: PMID: 11396175.
     Google Scholar
  28. J. Theys, W. Landuyt, S. Nuyts, L. Van Mellaert, A. Van Oosterom, P. Lambin and Anné J. (April 2001). Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum. Cancer Gene Ther. 8(4). pp. 294-297. Available: https://doi.org/10.1038/sj.cgt.7700303.
    DOI  |   Google Scholar
  29. J. Nemunaitis, C. Cunningham, N. Senzer, J. Kuhn, J. Cramm, C. Litz, et al. (October 2003). Pilot trial of genetically modified, attenuated Salmonella expressing the E.coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 10(10). pp. 737-744. Available: https://doi.org/10.1038/sj.cgt.7700634.
    DOI  |   Google Scholar
  30. S.C. Liu, G. O. Ahn, M. Kioi, M. J. Dorie, A. V. Patterson and J. M. Brown. (October 2008). Optimized clostridium-directed enzyme prodrug therapy improves the antitumor activity of the novel DNA cross-linking agent PR-104. Cancer res. 68(19). pp. 7995-8003. Available: https://doi.org/10.1158/0008-5472.can-08-1698.
    DOI  |   Google Scholar
  31. J. Stritzker, S. Pilgrim, A. A. Szalay and W. Goebel. (April 2008). Prodrug converting enzyme gene delivery by L. monocytogenes. BMC Cancer. 8. pp. 94. Available: https://doi.org/10.1186/1471-2407-8-94.
    DOI  |   Google Scholar
  32. L. Green, M. Storey, E. Williams, A. Patterson, J. Smaill, J. Copp and D. Ackerley. (September 2013). The flavin reductase MsuE is a novel nitroreductase that can efficiently activate two promising next-generation prodrugs for gene-directed enzyme prodrug therapy. Cancers. 5(4). pp. 985–997. Available: https://dx.doi.org/10.3390%2Fcancers5030985.
    DOI  |   Google Scholar
  33. A. M. Kubiak and N. P. Minton. (Mayy 2015). The potential of clostridial spores as therapeutic delivery vehicles in tumour therapy. Res Microbiol. 166(4). pp. 244–254. Available: https://doi.org/10.1016/j.resmic.2014.12.006.
    DOI  |   Google Scholar
  34. A. Polak, E. Eschenhof, M. Fernex and H. J. Scholer. (1976). Metabolic studies with 5-Fluorocytosine-6-14C in mouse, rat, rabbit, dog and man. Chemotherapy. 22(3-4). pp. 137–153. Available: https://doi.org/10.1159/000221923.
    DOI  |   Google Scholar
  35. T. Sasaki, M. Fujimori, Y. Hamaji, Y. Hama, K. Ito, J. Amano and S. Taniguchi. (July 2006). Genetically engineered Bifidobacterium longum for tumor-targeting enzyme-prodrug therapy of autochthonous mammary tumors in rats. Cancer Sci. 97(7). pp. 649-657. Available: https://doi.org/10.1111/j.1349-7006.2006.00221.x.
    DOI  |   Google Scholar
  36. C. D. Emptage, R. J. Knox, M. J. Danson and D. W. Hough. (January 2009). Nitroreductase from Bacillus licheniformis : A stable enzyme for prodrug activation. Biochem Pharmacol. 77(1). pp. 21-29. Available: https://doi.org/10.1016/j.bcp.2008.09.010.
    DOI  |   Google Scholar
  37. I. King, D. Bermudes, S. Lin, M. Belcourt, J. Pike, K. Troy, et al. (Jul 2002). Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent. Hum gene ther.13(10). pp. 1225–1233. Available: https://doi.org/10.1089/104303402320139005.
    DOI  |   Google Scholar
  38. I. King, M. Itterson and D. Bermudes. (2009). Tumor-targeted Salmonella typhimurium overexpressing cytosine deaminase: A novel, tumor-selective therapy. Methods Mol Biol. 542. pp. 649-659. Available: https://doi.org/10.1007/978-1-59745-561-9_33.
    DOI  |   Google Scholar
  39. M. E. Fox, M.J. Lemmon, M. L. Mauchline, T. O. Davis, A. J. Giaccia, N.P. Minton and J. M. Brown. (February 1996). Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene ther. 3(2). pp. 173-178. Available: PMID: 8867865.
     Google Scholar
  40. J. Theys, A. W. Landuyt, S. Nuyts, L. Van Mellaert, P. Lambin and J. Anné. (2001). Clostridium as a tumor-specific delivery system of therapeutic proteins. Cancer Detect Prev. 25(6). pp. 548-557. Available: PMID: 12132875.
     Google Scholar
  41. J. Theys, W. Landuyt, S. Nuyts, L. Van Mellaert, E. Bosmans, A. Rijnders, et al. (February 2001). Improvement of Clostridium tumour targeting vectors evaluated in rat rhabdomyosarcomas. FEMS Immunol Med Microbiol. 30(1). pp. 37-41. Available: https://doi.org/10.1111/j.1574-695x.2001.tb01547.x.
    DOI  |   Google Scholar
  42. J. A. Xu, X. Liu, S. Zhou and M. Q. Wei. (April 2009). Combination of immunotherapy with anaerobic bacteria for immunogene therapy of solid tumours. Gene Ther Mol Biol. 13. pp. 36-52.
     Google Scholar
  43. F. Avogadri, C. Martinoli, L. Petrovska, C. Chiodoni, P. Transidico, V. Bronte, et al. (May 2005). Cancer immunotherapy based on killing of Salmonella-infected tumor cells. Cancer Res. 65(9). pp. 3920-3927. Available: https://doi.org/10.1158/0008-5472.can-04-3002.
    DOI  |   Google Scholar
  44. B.K. Al-Ramadi, M. J. Fernandez-Cabezudo, H. El-Hasasna, S. Al-Salam, S. Attoub, D. Xu and S. Chouaib. (September 2008). Attenuated bacteria as effectors in cancer immunotherapy. Ann N Y Acad Sci. 1138. pp. 351-357. Available: https://doi.org/10.1196/annals.1414.036.
    DOI  |   Google Scholar
  45. Z. Ruan, Z. Yang, Y. Wang, H. Wang, Y. Chen, X. Shang, et al. (June 2009). DNA vaccine against tumor endothelial marker 8 inhibits tumor angiogenesis and growth. J Immunother. 32(5). pp. 486-491. Available: https://doi.org/10.1097/cji.0b013e3181a1d134.
    DOI  |   Google Scholar
  46. L. M. Wood, P. D. Guirnalda, M. M. Seavey and Y. Paterson. (2008). Cancer immunotherapy using Listeria monocytogenes and listerial virulence factors. Immunol Res. 42(1-3). pp. 233-245. Available: https://doi.org/10.1007/s12026-008-8087-0.
    DOI  |   Google Scholar
  47. S. H. Kim, F. Castro, Y. Paterson and C. Gravekamp. (July 2009). High efficacy of a Listeria-based vaccine against metastatic breast cancer reveals a dual mode of action. Cancer res. 69(14). pp. 5860-5866. Available: https://doi.org/10.1158/0008-5472.can-08-4855.
    DOI  |   Google Scholar
  48. M. Loeffler, G. Le’Negrate, M. Krajewska and J. C. Reed. (July 2007). Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc Natl Acad Sci USA. 104(31). pp. 12879–12883. Available: https://dx.doi.org/10.1073%2Fpnas.0701959104.
    DOI  |   Google Scholar
  49. C. E. Thomas, A. Ehrhardt and M. A. Kay. (May 2003). Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 4(5). pp. 346-358. Available: https://doi.org/10.1038/nrg1066.
    DOI  |   Google Scholar
  50. M. Morille, C. Passirani, A. Vonarbourg, A. Clavreul and J. P. Benoit. (August - September 2008). Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 29(24-25). pp. 3477-3496. Available: https://doi.org/10.1016/j.biomaterials.2008.04.036.
    DOI  |   Google Scholar
  51. S. R. Ji, C. Liu, B. Zhang, F. Yang, J. Xu, J. Long, et al. (August 2010). Carbon nanotubes in cancer diagnosis and therapy. Biochim Biophys Acta. 1806(1). pp. 29-35. Available: https://doi.org/10.1016/j.bbcan.2010.02.004.
    DOI  |   Google Scholar
  52. C. M. McCrudden and H. O. Mccarthy, "Cancer gene therapy – Key biological concepts in the design of multifunctional non-viral delivery systems", in Gene Therapy - Tools and potential applications, Francisco Martin Molina, IntechOpen, 2013. Available: http:// doi.org/10.5772/54271.
    DOI  |   Google Scholar
  53. C. Ptak and A. Petronis. (2008). Epigenetics and complex disease: from etiology to new therapeutics. Annu Rev Pharmacol Toxicol. 48. pp. 257-276. Available: https://doi.org/10.1146/annurev.pharmtox.48.113006.094731.
    DOI  |   Google Scholar
  54. R. Van der Meel, W. M. Gallagher, S. Oliveira, A. E. O'Connor, R. M. Schiffelers and A. T. Byrne. (February 2010). Recent advances in molecular imaging biomarkers in cancer: application of bench to bedside technologies. Drug Discov Today. 15(3-4). pp. 102-114. Available: https://doi.org/10.1016/j.drudis.2009.12.003.
    DOI  |   Google Scholar
  55. S. A. Soghomonyan, M. Doubrovin, J. Pike, X. Luo, M. Ittensohn, J. D. Runyan, et al. (January 2005). Positron emission tomography (PET) imaging of tumor-localized Salmonella expressing HSV1-TK. Cancer Gene Ther. 12(1). pp. 101-108. Available: https://doi.org/10.1038/sj.cgt.7700779.
    DOI  |   Google Scholar
  56. K. Flentie, B. Kocher, S. T. Gammon, D. V. Novack, J. S. McKinney and D. Piwnica-Worms. (July 2012). A bioluminescent transposon reporter-trap identifies tumor-specific microenvironment-induced promoters in Salmonella for conditional bacterial-based tumor therapy. Cancer Discov. 2(7). pp. 624–637. Available: https://doi.org/10.1158/2159-8290.cd-11-0201.
    DOI  |   Google Scholar
  57. J. J. Min, H. J. Kim, J. H. Park, S. Moon, J. H. Jeong, Y. J. Hong, et al. (Januaryy - February 2008). Noninvasive real-time imaging of tumors and metastases using tumor-targeting light-emitting Escherichia coli. Mol Imaging Biol. 10(1). pp. 54-61. Available: https://doi.org/10.1007/s11307-007-0120-5.
    DOI  |   Google Scholar
  58. Y. A. Yu, T. Timiryasova, Q. Zhang, R. Beltz and A. A. Szalay. (November 2003). Optical imaging: Bacteria, viruses, and mammalian cells encoding light-emitting proteins reveal the locations of primary tumors and metastases in animals. Anal Bioanal Chem. 377(6). pp. 964-972. Available: https://doi.org/10.1007/s00216-003-2065-0.
    DOI  |   Google Scholar
  59. Y. A. Yu, S. Shabahang, T. M. Timiryasova, Q. Zhang, R. Beltz, I. Gentschev, et al. (March 2004). Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting protein. Nat Biotechnol. 22(3).pp.313-320.Available: slksdfhttps://doi.org/10.1038/nbt937.
    DOI  |   Google Scholar