Prevalence of Extended-Spectrum β-Lactamase-Production among Clinical Gram-Negative Bacilli Isolates in A Tertiary Hospital, Southwest Nigeria


  •   Babatunde Odetoyin

  •   Oluwaseun Adewole


Extended spectrum β-lactamases (ESBLs) have emerged as important mechanisms of antimicrobial resistance to beta-lactam drugs in hospitals, thereby limiting the available treatment options for infections caused by these microorganisms. The objectives of this study were to determine the prevalence of ESBL production among clinical isolates of Gram-negative bacilli from Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria as part of the global efforts to provide information for the containment of the spread of antimicrobial resistance. This is a laboratory-based study of 186 consecutive non-duplicate Gram-negative bacilli (GNB) isolated from diverse clinical samples at the Microbiology laboratory of the hospital after standard aerobic cultures. The isolates were identified by conventional biochemical test scheme and commercial GNB API 20E identification kit. Antimicrobial susceptibility testing (AST) of each isolate was determined by the disk diffusion technique. Isolates presumptively identified as ESBL producers from the AST assay were confirmed by the combination disks method. Escherichia coli (n=43; 23.1%) predominated among the organisms, followed by Enterobacter spp (n=23; 12.4%) and Klebsiella spp (n=22; 11.8%). Most of the organisms (95.7%) were resistant to tetracycline and ampicillin, but the least resistance (4.3%) was exhibited to imipenem. Fifty-eight (31.2%) isolates were ESBL producers with a preponderance of E. coli (n=15; 25.9%). The ESBL producers were commonly isolated from urine samples (n=31; 53.4%), and were significantly more resistant to levofloxacin, ciprofloxacin, nalidixic acid, gentamicin, augmentin, cefepime, ceftriaxone, ceftazidime and cefotaxime (p<0.05). This study has highlighted the therapeutic implications of the presence of EBSL in clinical isolates which was depicted by their multi-drug resistance phenotypes, thus emphasizing the need for continuous surveillance of bacterial resistance, institution of antimicrobial resistance stewardship in our hospital and regular screening of ESBLs in clinical isolates to prevent treatment failure.

Keywords: Clinical isolates, esbl, gram negative bacilli, multi-drug resistance


Y. Doi, R.A. Bonomo, D.C. Hooper, K.S. Kaye, J.R. Johnson, C.J. Clancy, J.T. Thaden, M.E. Stryjewski, and D. van Duin: “Gram-Negative Bacterial Infections: Research Priorities, Accomplishments, and Future Directions of the Antibacterial Resistance Leadership Group.” Clin. Infect. Dis, 64(1):30–S35,2017. doi:10.1093/cid/ciw829.

B.T. Tadesse, E.A. Ashley, S. Ongarello, J. Havumaki, M. Wijegoonewardena, I.J. González, and S. Dittrich, “Antimicrobial resistance in Africa: a systematic review.” BMC Infect Dis, 17 (1): 616, 2017. doi:10.1186/s12879-017-2713-1.

M. Bassetti, M. Peghin, A. Vena, and D.R. Giacobbe. “Treatment of Infections Due to MDR Gram-Negative Bacteria.” Front. Med, 6:74, 2019. doi:10.3389/fmed.2019.00074.

D. Rawat and D. Nair, “Extended-spectrum β-lactamases in Gram Negative Bacteria.” J Glob Infect Dis, 2(3): 263–274, 2010. doi:10/fktqxj.

R.H.-P. Dhillon and J. Clark: “ESBLs: A Clear and Present Danger?” Crit Care Res Pract, 2012: 1–11, 2012. doi:10/cm2wj2.

K.W. Benner, P. Prabhakaran, and A.S. Lowros, “Epidemiology of Infections Due to Extended-Spectrum Beta-Lactamase–Producing Bacteria in a Pediatric Intensive Care Unit.” J Pediatr Pharmacol Ther, 19 (2): 83–90, 2014. doi:10/gg3qqg.

F.J. Giwa, O.T. Ige, D.M. Haruna, Y. Yaqub, T.Z. Lamido, and S.Y. Usman, “Extended ‑ Spectrum Beta ‑ lactamase Production and Antimicrobial Susceptibility Pattern of Uropathogens in a Tertiary Hospital in Northwestern Nigeria.” Ann Trop Pathol, 9: 11–16, 2018. doi:10.4103/atp.atp.

O.A. Aboderin, O. Adefehinti, B.W. Odetoyin, A.A. Olotu, I.N. Okeke, and O. Adeodu: “Prolonged febrile illness due to CTX-M-15 extendedspectrum β-lactamase-producing Klebsiella pneumoniae infection in Nigeria.” Afr J Lab Med, 1(1), 2011. doi:10/gffcng.

J.D.D. Pitout, P. Nordmann, K.B. Laupland, and L. Poirel, “Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community” J Antimicrob Chemother, 56 (1): 52–59, 2005. doi:10/d4qsfg.

R. Ben‐Ami, J. Rodríguez‐Baño, H. Arslan, J.D.D. Pitout, C. Quentin, E.S. Calbo, Ö.K. Azap, C. Arpin, A. Pascual, D.M. Livermore, J. Garau, and Y. Carmeli, “A Multinational Survey of Risk Factors for Infection with Extended‐Spectrum β‐Lactamase–Producing Enterobacteriaceae in Non-hospitalized Patients.” Clin Infect Dis, 49(5): 682–690, 2009. doi:10/d6t5v3.

CLSI, “Performance Standards for Antimicrobial Susceptibility Testing,” (2016).

A.-P. Magiorakos, A. Srinivasan, R.B. Carey, Y. Carmeli, M.E. Falagas, C.G. Giske, S. Harbarth, J.F. Hindler, G. Kahlmeter, B. Olsson-Liljequist, D.L. Paterson, L.B. Rice, J. Stelling, M.J. Struelens, A. Vatopoulos, J.T. Weber, and D.L. Monnet, “Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.” Clin Microbiol Infect Dis, 18 (3): 268–281, 2012. doi:10.1111/j.1469-0691.2011.03570.x.

R Core Team, “R: A language and environment for statistical computing.” 2019.

M.S. Berends, C.F. Luz, A.W. Friedrich, B.N.M. Sinha, C.J. Albers, and C. Glasner, “AMR – An R Package for Working with Antimicrobial Resistance Data.” Microbiology, 2019. doi:10.1101/810622; 0/

F.E. Al-Otaibi, E.E. Bukhari, M. Badr, and A.A. Alrabiaa: “Prevalence and risk factors of Gram-negative bacilli causing blood stream infection in patients with malignancy.” Saudi Med J, 37(9): 979–984, 2016. doi:10/f85jqc.

A.Y. Peleg and H. Dc, “Hospital-Acquired Infections Due to Gram-Negative Bacteria.” NEngl J Med, 362:1804–13, 2010. doi:10/bj34wz.

B.W. Odetoyin, O. Olaniran, D.O. Afolayan, I.A. Aderibigbe, O. Alaka, and A.A. Onanuga, “Asymptomatic bacteriuria in an apparently healthy population and its relation to hypertension.” Afr J Clin Exp Microbiol, 19 (4): 282, 2018. doi:10/gffcf6.

E.U. Israel, E.G. Sylvester, and A. Elijah, “The Use of Antibiotics in a Nigerian Tertiary Health Care Facility,” 1(3): 25-31, 2015.

O. Ouchar Mahamat, A. Tidjani, M. Lounnas, M. Hide, J. Benavides, C. Somasse, A.-S. Ouedraogo, S. Sanou, C. Carrière, A.-L. Bañuls, H. Jean-Pierre, Y. Dumont, and S. Godreuil, “Fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae in hospital and community settings in Chad.” Antimicrob Resist Infect Control, 8(1): 169, 2019. doi:10/gg3tvq.

N. Rahamathullah, S.K. Ahamed Khan, Z. Arshad Khan, A. Farrukh, H.M. Bashir, and A. Ahmad, “Prevalence of extended spectrum beta-lactamase producing Enterobacteriaceae in urine samples from Thumbay hospitals, U.A.E.” Access Microbiol, 1(1A): 434, 2019. doi:10.1099/acmi.ac2019.po0254.

P. Sawatwong, P. Sapchookul, T. Whistler, C.J. Gregory, O. Sangwichian, S. Makprasert, P. Jorakate, P. Srisaengchai, S. Thamthitiwat, C. Promkong, P. Nanvatthanachod, M. Vanaporn, and J. Rhodes, “High Burden of Extended-Spectrum β-Lactamase–Producing Escherichia coli and Klebsiella pneumoniae Bacteremia in Older Adults: A Seven-Year Study in Two Rural Thai Provinces.” Am J Trop Med Hyg, 100 (4): 943–951, 2019. 100:943–51, doi:10/gg3tvr.

B.M. Musa, H. Imam, A. Lendel, I. Abdulkadir, H.S. Gumi, M.H. Aliyu, and A.G. Habib: “The burden of extended-spectrum β-lactamase-producing Enterobacteriaceae in Nigeria: a systematic review and meta-analysis.” Trans. R. Soc. Trop. Med. Hyg, 114(4), 241–248, 2020. doi:10/gg3trs.

E.K. Oladipo, J.O. Ogunsola, B.S. Akinade, and E.H. Awoyelu: “Resistance of Clinical Isolates to Generation of Cephalosporins in a Tertiary Hospital in Ogbomoso, South-Western Nigeria.” Res J Microbiol, 10 (2): 76–82, 201, 2015. doi:10.3923/jm.2015.76.82.

J. Dantas Palmeira and H.M.N. Ferreira, “Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production – a threat around the world.” Heliyon, 6 (1): e03206, 2020. doi:10/gg3trx.

J. Rodríguez-Baño, B. Gutiérrez-Gutiérrez, I. Machuca, and A. Pascual, “Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae.” Clin Microbiol Rev, 31(2): e00079-17, 2018. doi:10.1128/CMR.00079-17.

D. Kumar, A.K. Singh, M.R. Ali, and Y. Chander, “Antimicrobial Susceptibility Profile of Extended Spectrum β-Lactamase (ESBL) Producing Escherichia coli from Various Clinical Samples.” Infect Dis, 7: 1–8, 2014. doi:10.4137/IDRT.S13820.

S. Vemula and R. Vadde, “Prevalence of ESBL-Producing Klebsiella pneumoniae Isolates in Tertiary Care Hospital.” ISRN Microbiol, 2011: 318–48, 2011.

A.-S. Ouédraogo, S. Sanou, A. Kissou, A. Poda, S. Aberkane, N. Bouzinbi, B. Nacro, R. Ouédraogo, P. Van De Perre, C. Carriere, D. Decré, H. Jean-Pierre, and S. Godreuil, “Fecal Carriage of Enterobacteriaceae Producing Extended-Spectrum Beta-Lactamases in Hospitalized Patients and Healthy Community Volunteers in Burkina Faso.” Microb Drug Resist, 23 (1): 63–70, 2017. doi:10/f9k998.

D.S. Teklu, A.A. Negeri, M.H. Legese, T.L. Bedada, H.K. Woldemariam, and K.D. Tullu, “Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia.” Antimicrob Resist Infect Control, 8 (1): 39, 2019. doi:10.1186/s13756-019-0488-4.

Y. Mohammed, G.B. Gadzama, S.B. Zailani, and A.O. Aboderin, “Characterization of extended-spectrum beta-lactamase from Escherichia coli and Klebsiella species from North Eastern Nigeria.” J Clin Diagn Res, JCDR. 10 (2): DC07, 2016.

H. Ogefere, P. Aigbiremwen, and R. Omoregie, “Extended-Spectrum Beta-Lactamase (ESBL)–Producing Gram-negative Isolates from Urine and Wound Specimens in a Tertiary Health Facility in Southern Nigeria.” Trop J Pharm Res, 14 (6): 1089, 2015. doi:10/gffcpv.

F.S. Codjoe and E.S. Donkor, “Carbapenem Resistance: A Review.” Med Sci, 6 (1): 2017. doi:10/c9zd.

Z.D. Pana and T. Zaoutis, “Treatment of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBLs) infections: what have we learned until now?” F1000Research, 7, 2018. doi:10.12688/f1000research.14822.1.


Download data is not yet available.


How to Cite
Odetoyin, B., & Adewole, O. (2021). Prevalence of Extended-Spectrum β-Lactamase-Production among Clinical Gram-Negative Bacilli Isolates in A Tertiary Hospital, Southwest Nigeria. European Journal of Medical and Health Sciences, 3(5), 9–13.